
 page 1 10/8/1999 3:41:00 PM

[Version number, author, save date, and task days total are fields and can be updated with F9]

Resource System Design Document, v3

Greg Sabatini

October 9, 1999

Introduction

The resource system acts as a database for the game, and handles all file
loading and saving in the game. It keeps records of all assets which have been
loaded and all objects that exists in the game.

Requirements

This system should be able to handle all required file system access, including
loading and saving. It also should be able to parse scene information to load
assets necessary for the scene, create objects, and spawn those objects. Since
all assets must be cross-platform, virtually all of this system will be shared code.
Specific file handling routines may be platform specific. If a specialized memory
manager is required for the Mac, it will be included in this system.

This system is used by the Gameloop system for scene loading, the Sound
system for streaming sounds, and the Script System for loading scripts. It uses
the individual asset classes: CAnim, CBitmap, CSprite, CSound, etc. to parse the
files it loads into usable formats.

Structures/Classes

Class CSceneDB;
The CSceneDB class keeps records of all the objects in the game. It uses
an array of pointers to linked lists for keeping track of the objects. Each
object may be in any of the multiple linked lists in this array. Each linked
list contains a differently ordered list based on a object property.
The CSceneDB class also is responsible for loading in the scene files,
creating objects for them, and calling the CAssetDB class to load the
associated assets. This class then adds the objects to its object linked
lists.

Class CAssetDB;

The CAssetDB class keeps records of which assets are currently loaded
and a pointer to the loaded version of the asset. Using the following
structure:
struct asset_record_struct {
 char[16] szLabel;
 CAsset *pAsset;

 page 2 10/8/1999 3:41:00 PM

};

When called to load an asset, this class will check to see if it has loaded
the asset previously. If it has, it will return the pointer to the asset,
otherwise it will create a new CAsset subobject based on the file extension
and call the object load for this object.

Class CFile;

 This class will contain all the file handling routines, including loading,
saving, and streaming.

Functions/Methods

class CSceneDB {
protected:

public:
 CSceneDB(); // Scene Constructor
 ~CSceneDB(); // Scene Destructor (deletes CAssetDB)

 LoadScene(const char *szFilename);

 AddObject(pObject); // Adds object to linked lists
 DeleteObject(pObject); // Deletes object from linked lists

 SpawnObject(const char *szLabel); // Creates a copy of object

// Sets active list at head of passed property
SetListType(enum LinkListProperty);
NextObject(); // Gets curr object and advances list

};

class CAssetDB {
protected:

public:

CAssetDB()
~CAssetDB()

LoadAsset(const char* szFile, ** ppObject);

};

 page 3 10/8/1999 3:41:00 PM

class CFile {
protected:

public:

CFile();
~CFile();

 GetSize(const char* szFilename);

 Load(const char* szFilename, void *pHere);
 Save(const char* szFilename, void *pHere);

 OpenStream(const char* szFilename, int Read_Write_Type);
 ReadStream(Handle, void* pHere, int bytes);
 WriteStream(Handle, void* pHere, int bytes)
 CloseStream(Handle);
};

Diagrams

CSceneDB Linked List Diagram

Actors

[0]

Depth

[1]

Collide

[2]

Effects

[3]

 page 4 10/8/1999 3:41:00 PM

Schedule Task List

System Tasks Duration Dependent

Design Win32 CFile class 0.5 Days Design Document

Design Mac CFile class 0.5 Days Win32 CFile class designed

Code Win32 CFile class 2 Days Win32 CFile class designed

Test & Revise Win32 CFile class 1 Day Win32 CFile class finished

Code Mac CFile class 2 Days Mac CFile class designed

Test & Revise Mac CFile class 1 Day Mac CFile class finished

Design CAssetDB class 1 Day Design Doc, CAsset and
subclasses designed

Code CAssetDB class 2 Days CAssetDB class designed,
CAsset subclasses finished

Test & Revise CAssetDB class 1 Day CAssetDB class finished

Design CSceneDB class 2 Days Design Doc, CAssetDB
class designed

Code CSceneDB class 3 Days CSceneDB class designed,
CAssetDB class finished

Test & Revise CSceneDB class 2 Days CSceneDB class finished

Integrate Resource system 1 Day CAssetDB, CSceneDB,
CFile tested and revised

Rework #1 CFile class 1 Day As Needed

Test & Revise CFile Rework #1 1 Day CFile class Reworked #1

Rework #2 CFile class 1 Day As Needed

Test & Revise CFile Rework #2 1 Day CFile class Reworked #2

Rework #1 CAssetDB class 2 Days As Needed

Test & Revise CAssetDB Rework
#1

1 Day CAssetDB class Reworked
#1

Rework #2 CAssetDB class 1 Day As Needed

Test & Revise CAssetDB Rework
#2

1 Day CAssetDB class Reworked
#2

Rework #1 CSceneDB class 2 Days As Needed

Test & Revise CSceneDB Rework
#1

1 Day CSceneDB class Reworked
#1

Rework #2 CSceneDB class 1 Day As Needed

Test & Revise CSceneDB Rework
#2

1 Day CSceneDB class Reworked
#2

Total 33 Days

Memory

Although this system must use considerable memory while loading files, because
the files are first loaded in whole and then parsed into the correct format, the

 page 5 10/8/1999 3:41:00 PM

allocation of this memory is done by other systems. While running the actual
game, the memory requirements are small, due to the linked list and array of
pointer to linked list data structure use.

Risk Assessment

The Resource database systems have a low level of risk. The risk lies primarily
in the SAM reading/parsing being slow, in which case we can create a binary
version of the format.

The CFile system also experiences a low level of risk. If memory dictates, we
could build a compression system into this class. This is not accounted for in the
task list.

Because this system will include the memory manager on the Mac, if required,
this system has a high level of risk built in. This is where we could use the Mac
consultant if necessary.

QA & Test

For the CAssetDB and CSceneDB classes the correct number of objects and
assets (w/o duplications) being loaded in based on the SAM output will verify that
this module is working correctly. For the CFile class, the file or portion of the file
being the same in memory as it was on the disk will verify that this system works.
If no file is working correctly, there is most likely a problem with the CFile class.

