
 page 1 10/19/1999 2:09:00 PM

Record Keeping System Design Document, v2

Randy Angle

October 19, 1999

Introduction

There are two main uses for the record keeping system. The first and primary reason is to allow
the game to track the progress of a child and tailor the activities and difficulty according to the
lessons already finished. The second reason is to allow the development team to access records
of the play during focus testing. These records will be used to improve the product as much as
possible and identify weak areas of the interface or activity design.

The technique used to track progress is a combination of event, time, and activity completion
recording. Minutes in certain zones or areas of the game will indicate which areas the child spends
more time. Number of click events shows that the child is interacting and what they are interacting
with. If a particular activity has some completion event then the game will record that progress.

The game design states that the Bricky and Clicky activities will select randomly from activities that
the child has gained some experience with when choosing MATH, LANGUAGE, ART or MUSIC.
Each activity will record the progress and increment a bucket indicating which areas the child
learned more in.

Requirements

Because the Record Keeping system is used for both save status and focus test recording it must
meet the requirements of both. The structure used to keep the save status will also have just
enough additional information to make focus test records useful. It must record time, mouse events
and activity events for all 31 activities (24 learning + 4 teaching + 3 interface). In any activity it will
record click events on several types of scene objects (character, door, props before activity, and
props after activity). In each scene the time before the formal activity and the time after the formal
activity starts is recorded. These records will be saved to the hard drive on the user’s machine and
will be loaded when a child with a matching name plays again.

There are a few activities that require the ability to save an animation the child creates. Here we
will record a string of delta time/event pairs that can be used to replay the animation created.

 page 2 10/19/1999 2:09:00 PM

Structures/Classes

typedef enum

{

 RKEVENT_CHARACTER = 0,

 RKEVENT_DOOR,

 RKEVENT_MOUSECLICK,

 RKEVENT_MOUSECLICK_AFTER,

 RKEVENT_PROP,

 RKEVENT_PROP_AFTER,

 RKEVENT_MAX

} ERKEVENT;

typedef enum

{

 RKCURRICULUM_MATH = 0,

 RKCURRICULUM_LANGUAGE,

 RKCURRICULUM_ART,

 RKCURRICULUM_MUSIC,

 RKCURRICULUM_MAX

} ERKCURRICULUM;

typedef enum

{

 RKCHARACTER_KINESTHETIC = 0,

 RKCHARACTER_ART,

 RKCHARACTER_MUSIC,

 RKCHARACTER_SOCIAL,

 RKCHARACTER_LANGUAGE,

 RKCHARACTER_MATHEMATICS,

 RKCHARACTER_MAX

} ERKCHARACTER;

typedef enum

{

 RKINTERFACE_SCROLLING = 0,

 RKINTERFACE_SIGNIN,

 RKINTERFACE_TYPEIN,

 RKINTERFACE_MAX

} ERKINTERFACE;

typedef enum

{

 RKMODE_LEARNING = 0,

 RKMODE_TEACHING,

 RKMODE_INTERFACE,

 RKMODE_MAX

} ERKMODE;

typedef struct TAnimEventTag

{

 float DTime;

 int Object;

 long Xpos;

 long Ypos;

 TanimEventTag* Next;

} TAnimEvent;

typedef struct

{

 float TotalSceneTime;

 long TotalMouseClicks;

 int Completions;

 int Events[RKEVENT_MAX];

} TSceneRecord;

 page 3 10/19/1999 2:09:00 PM

class CRecordKeeper

{

private:

 float TotalGameTime;

 int Learned[RKCURRICULUM_MAX];

 int Character[RKCHARACTER_MAX];

 TSceneRecord LearningScenes[RKCURRICULUM_MAX][RKCHARACTER_MAX];

 TSceneRecord TeachingScenes[RKCURRICULUM_MAX];

 TSceneRecord InterfaceScenes[RKINTERFACE_MAX];

 TAnimEvent* pAnimSave;

 ERKCURRICULUM CurrentCurriculum;

 ERKCHARACTER CurrentCharacter;

 ERKMODE CurrentMode;

 ERKINTERFACE CurrentInterface;

 BOOL CharacterClicked;

public:

 CRecordKeeper();

 ~CRecordKeeper();

 BOOL Save(char* PlayerName);

 BOOL Load(char* PlayerName);

 void SetMode(ERKMODE NewMode);

 void SetCurriculum(ERKCURRICULUM NewCurriculum);

 void SetCharacter(ERKCHARACTER NewCharacter);

 void AddSceneEvent(ERKEVENT NewEvent);

 void AddAnimEvent(TAnimEvent* pNewAnimEvent);

 void Update(float DeltaTime);

 void HasLearned(ERKCURRICULUM LearnedCurriculum);

 void Display(void);

}

 page 4 10/19/1999 2:09:00 PM

Schedule Task List

System Tasks Duration Dependent

Design Record Keeping System 1 Day Design Document

Code RK System 4 Days RK Class designed

Integrate RK System 1 Day RK Class coded

Test & Revise RK System 1 Day RK System integrated

Rework #1 RK Class 2 Days As Needed

Test & Revise RK Rework #1 1 Day RK Class Reworked #1

Rework #2 RK Class 2 Day As Needed

Test & Revise RK Rework #2 1 Day RK Class Reworked #2

Total 13 Days

Memory

The Record Keeping system uses arrays and lists to store the results of the save status. Because
there are 31 scenes and the capability to store arbitrarily large animation event lists this seems like
it could be quite a bit of memory. Each scene takes approximately 16 bytes for each (31*16 = 496
bytes). Each frame of an animation list takes 20 bytes; an animation 50 frames long would be 1000
bytes. A typical save game might reach 3k.

Risk Assessment

The real risk with the record keeping system is that we might need additional information to make
useful decisions during focus testing. Every effort has been made to make it flexible and over-
engineer the kinds of elements that we are recording.

In order to guard against faulty records magic numbers and checksums can be used in the files.

QA & Test

The Record Keeping system is a fairly straightforward file load, update and save process. It has all
the faults that most file systems have when it comes to loading bad data. Testers should test and
verify loads and try to feed the products bad data on occasion to see if it detects it. A function
display the current save status to a debug console/window will help in the process of testing.

