
 page 1 10/19/1999 1:39:00 PM 

 

Procedural Textures System Design Document, v2 

Randy Angle 

October 19, 1999 

 

Introduction 

Provides animation without incurring additional art assets. This system allows for visual effects 
involving procedural textures using simple 2D algorithms over time. The sprites will be updated 
regularly (each frame if necessary) and can be copied to a location on the screen to represent a 
special effect. Think of this a tricky color cycling or Budweiser Beer sign animation (a scrolling lit 
background behind a transparent picture of a river). The algorithm will have several dial-able 
properties and can change over time. The other purpose of the procedural texture system will be to 
provide wipes and fades used during screen transitions.  
 

Requirements 

A procedural texture creates a new instance of a TexFX class, which is a custom form of the 
CAnimSprite. It will use parametric values that change over time to display a unique animating 
rectangle sprite object. It must be able to sustain the animating of the sprite in a real-time 
performance using simple methods: 
 
pWaterSprite = new CTexFX; 

pWaterSprite->Spawn(ETFXSTYLE_WATERFALL,Speed,Xpos,Ypos,Size,Layer);  

pWaterSprite->NewOrigin(x+dx,y+dy); 

pWaterSprite->NewSize(Box); 

pWaterSprite->NewStyle(ETFXTYLE_FIRE); 

pWaterSprite->NewSpeed(Speed+5); 

pWaterSprite->NewLayer(Layer); 

pWaterSprite->Update();  

pWaterSprite->Draw(); 

delete pWaterSprite; 

 
Procedural textures are the same as any other animated sprite object and can be displayed in any 
layer. The larger they are the slower they become because of the number of pixels that must be 
read-modify-write to make the procedure work. 
  
Because they are simple rectangles it may be necessary to place them behind other objects that 
define non-rectangular shapes. 
 
This module uses the graphics system. While very similar to the CAnimSprite class, it may have 
features that would make it unique. TexFX objects are attached to the Scene database as they are 
created. 
 



 page 2 10/19/1999 1:39:00 PM 

 

Structures/Classes 

 
typedef enum 

{ 

 TFXSTYLE_WATERFALL=0, 

 TFXSTYLE_FIRE, 

 TFXSTYLE_LAVA, 

 TFXSTYLE_BUBBLES, 

 TFXSTYLE_STATIC 

} ETFXSTYLE; 

 

class CTexFX : CSprite 

{ 

private: 

int  Speed; 

ETFXSTYLE TexFXStyle; 

CBitMap* pOldImage; 

 

public: 

 CTexFX(); 

 ~CTexFX(); 

Spawn( ETFXSTYLE TexStyle, 

int Speed, 

long Xpos, 

long Ypos, 

RECT Size 

int Layer);  

 CBitMap* Attach(ETFXSTYLE TexStyle, CBitMap* pScreen); // returns old bitmap pointer 

 void  NewStyle(ETFXSTYLE Style) {TexFXStyle = Style;}; 

void NewSpeed(int newSpeed) {Speed = newSpeed;}; 

void Update(void);  

} 



 page 3 10/19/1999 1:39:00 PM 

 

Schedule Task List 

 

System Tasks Duration Dependent 

Design TexFX System 1 Day Design Document 

Code TexFX System 3 Days TexFX Class designed 

Integrate TexFX System 1 Day TexFX Class coded 

Test & Revise TexFX System 1 Day TexFX System integrated 

Rework #1 TexFX Class 1 Day As Needed 

Test & Revise TexFX Rework #1 1 Day TexFX Class Reworked #1 

Rework #2 TexFX Class 1 Day As Needed 

Test & Revise TexFX Rework #2 1 Day TexFX Class Reworked #2 

Total 10 Days  

 

Memory 

The TexFX system uses a bitmap that is loaded into system RAM for sprite data. The only other 
memory is the instance of the TexFX class. This should amount to less than 1K of RAM per TexFX 
class and width*height*2 per bitmap. 

Risk Assessment 

The real risk with the TexFX system is that it could be very slow to have multiple TexFX sprites on 
screen at once. Every effort will be made to optimize the performance so that it is possible to have 
at least three TexFX sprites on screen at once. If necessary the update rate can be slowed 
dynamically to maintain frame rate. 

QA & Test 

The TexFX system relies on much of the planned sprite technology. All the QA department should 
concern themselves with is does the presence of TexFX sprites slow the game too much and is the 
correct effect displayed. 
 


