
 page 1 10/8/1999 9:21:00 AM

[Version number, author, save date, and task days total are fields and can be updated with F9]

Player Input System Design Document, v5

Greg Sabatini

October 8, 1999

Introduction

The player input system interacts between all input devices (mouse, keyboard,
and any device to be added in the future.) Information such as keys/mouse
buttons pressed get queried from this system by the scripting system.

Requirements

This system should be polled once per frame to find the current status of the
mouse and keys. After the poll, any information queried will be that gathered by
the poll. It will be used by the script system to check screen position/hotpsot
location. It will also be used to draw the mouse cursor.

Structures/Classes

struct framedata
{
 int X; // X Position
 int Y; // Y Position
 int button; // Bitfield variable for mouse button
 char* keys; // Bitfield array for keypresses
}

CInput class – Wraps all devices and stores current data and last frame data
(cross-platform)
{
 CKeyboard *pKeyboard;
 CMouse *pMouse;

struct framedata Last;
struct framedata Curr;

}

CKeyboard class – Wraps keyboard input for CInput class (platform specific)
CMouse class – Wraps mouse input for CInput class (platform specific)

 page 2 10/8/1999 9:21:00 AM

Functions/Methods

CInput::CInput – constructor creates CKeyboard & CMouse.
CInput::CInput – destructor destroys CKeyboard & CMouse.
CInput::Poll – copies curr frame data to last frame and queries CKeyboard &
CMouse for new data.
CInput::GetData – functions to query data from curr frame data

Diagrams

Frame start
CInput::Poll
CInput::GetData
Frame end

 page 3 10/8/1999 9:21:00 AM

Schedule Task List

System Tasks Duration Dependent

Design CInput class 0.5 Days Design Document

Win32 Design CKeyboard &
CMouse class

0.5 Days CInput class design

Mac Design CKeyboard & CMouse
class

0.5 Days CInput class design

Code CInput class 0.5 Days CKeyboard & CMouse
design

Code Win32 CKeyboard class 0.5 Days CInput class coded

Code Win32 CMouse class 0.5 Days CInput class coded

Test & Revise Win32 CKeyboard &
CMouse classes

1 Day Win32 CKeyboard &
CMouse classes coded

Code Mac CKeyboard class 1 Day CInput class coded

Code Mac CMouse class 1 Day CInput class coded

Test & Revise Mac CKeyboard &
CMouse classes

1 Day Mac CKeyboard & CMouse
classes coded

Revise CInput (cross platform) 0.5 Days Win32 & Mac Testing and
Revision of CKeyboard and
CMouse

Rework #1 Input system 1 Day As Needed

Test & Revise Input System
Rework #1

1 Day Input System Reworked #1

Rework #2 Input system 1 Day As Needed

Test & Revise Input System
Rework #2

1 Day Input System Reworked #2

Total 11.5 Days

Memory

Bitfields reduce the amount of memory needed by this system. Approximately 60
bytes is required: 17 bytes for key presses, 4 for X, 4 for Y, 4 for mouse * 2 sets
of data.

There may be memory required by platform specific API’s.

No storage is used for this system.

 page 4 10/8/1999 9:21:00 AM

Risk Assessment

Should be a straight forward system. All games must use keyboard and mouse.
Mac remains uncharted territory, which is why the coding time is double that of
Windows.

QA & Test

All keys should work, mouse should return values for button presses and
location. Popup could be created that shows all input values to verify correct
functionality. Once this system is verified, keypresses and mouse clicks not
registering should not be the fault of this system. This system will be
continuously logged, however, which should allow problems with it to be easily
detected.

