

 page 1 10/19/1999 1:59:00 PM

Particle System Design Document, v2

Randy Angle

October 19, 1999

Introduction

Provides animation without incurring additional art assets. This system allows for visual effects
involving particles using simple 2D algorithms and small 2D art assets. The sprites will be kept in
VRAM when possible and copied to the screen as quickly as possible. The algorithm will have
several dial-able properties and can change over time.

Requirements

Spawning particle system creates a new instance of a particle class. It will use pre-loaded assets
and a procedural path to display a unique animation. It must be able to sustain the drawing of the
individual elements and calculate the movement using simple methods:

pParticle = new CParticle;

pParticle->Spawn(EPSPRITE_STAR,EPSTYLE_TORNADO,NumParticles,Speed,Xpos,Ypos,BoundingBox);

pParticle->NewOrigin(x+dx,y+dy);

pParticle->NewBox(BoundingBox);

pParticle->NewStyle(EPSTYLE_RAIN);

pParticle->NewSprite(EPSPRITE_DROP);

pParticle->NewNumber(NumParicles-10);

pParticle->NewSpeed(Speed+5);

pParticle->Update();

pParticle->Draw();

delete pParticle;

Particles always happen in a plane in front of the characters but behind cursors and drag objects.
They can move in any direction and will be clipped if they would be drawn off screen, or outside of
the bounding box. Any single particle system should be able to support up to 50 particles.

This module uses the graphics system. While very similar to the CSprite class, it may have
features that would make it unique. Particle objects are attached to the Scene database as they
are created.

 page 2 10/19/1999 1:59:00 PM

Structures/Classes

typedef enum

{

 PSPRITE_STAR=0,

 PSPRITE_DROP=3,

 PSPRITE_MOON=6,

 PSPRITE_HEART=9,

 PSPRITE_CLOVER=12

} EPSPRITE;

typedef enum

{

 PSTYLE_TORNADO=0,

 PSTYLE_RAIN,

 PSTYLE_EXPLOSION,

 PSTYLE_FIREWORKS,

 PSTYLE_BUBBLES,

 PSTYLE_BUGS

} EPSTYLE;

class CParticle

{

private:

 CVRAMSprite *pParticleList;

long ParticleX;

long ParticleY;

int ParticleSpeed;

RECT BoundingBox;

Int NumParticles;

EPSPRITE SpriteIndex;

EPSTYLE ParticleStyle;

public:

 CParticle();

 ~CParticle();

Spawn(EPSPRITE SpriteIndex,

EPSTYLE ParticleStyle,

int NumParticles,

int Speed,

long Xpos,

long Ypos,

RECT BoundingBox);

NewOrigin(long Xpos, long Ypos) {ParticleX = Xpos; ParticleY = Ypos;};

NewBox(RECT Box) {BoundingBox = Box;};

NewStyle(EPSTYLE Style) {ParticleStyle = Style;};

NewSprite(EPSPRITE SpriteIndex) {SpriteIndex = Index;};

NewNumber(int Num) {NumParticles = Num;};

NewSpeed(int Speed) {ParticleSpeed = Speed;};

Update(void);

Draw();

}

 page 3 10/19/1999 1:59:00 PM

Schedule Task List

System Tasks Duration Dependent

Design Particle System 1 Day Design Document

Code Particle System 3 Days Particle Class designed

Integrate Particle System 1 Day Particle Class coded

Test & Revise Particle System 1 Day Particle System integrated

Rework #1 Particle Class 1 Day As Needed

Test & Revise Particle Rework #1 1 Day Particle Class Reworked #1

Rework #2 Particle Class 1 Day As Needed

Test & Revise Particle Rework #2 1 Day Particle Class Reworked #2

Total 10 Days

Memory

The particle system uses a bitmap that is loaded into VRAM for sprite data. The only other memory
is the instance of the particle system and the specific sprites for each individual particle. This
should amount to less than 5K of RAM per system.

Risk Assessment

The real risk with the particle system is that it could be very slow to have multiple particle systems
on screen at once. Every effort will be made to optimize the performance so that it is possible to
have at least three systems of approximately 20 particles each. If necessary the number of
particles could be fixed and the system would dynamically alter the number of visible particles each
frame.

QA & Test

The particle system relies on much of the planned sprite technology. All the QA department should
concern themselves with is does the presence of particles slow the game too much and is the
correct sprite and style displayed on the correct events.

