
 page 1 10/19/1999 7:54:00 PM

Object AI Script System Design Document, v2

Randy Angle

October 19, 1999

Introduction

Every object, character or prop, in the game has a scripted behavior. The script tells the object how
to react to timers, player events, and other object interactions. All the behaviors are the result of
one of these stimuli. Starting a scene will cause the individual objects to be spawned into the
scene. The scene and these objects have certain assets that are organized and laid out with the
SAM (Scene Asset Manager) tool. The scripts for the objects are built using a programmer editor
and compiled into NOG files using NOGGIN (AI script compiler) tool. This document describes the
object hierarchy, the script syntax, and the interpreter model.

The object hierarchy builds from a fundamental object called the CObj, it contains a sprite that
contains a bitmap, and a location. A CObj can also contain an animated sprite that has multiple
frames of bitmaps that update at regular time intervals. The CObj class also contains other object
properties like script name, hotspot data, object name label, and pointers to other associated
object assets (sounds, etc.).

When the CObj class is first initialized for each object the code in the SPAWN section of the script
is run. In the main game loop each CObj has its’ update method called and the UPDATE script
section is processed. Any inter-object communication like CLICK, BUMP, MESSAGE has a
handler section in the object as well. Lastly there is a way to remove the object altogether and the
KILL section of the script is processed.

Inter-object messaging is the primary system for activating or externally changing the state of an
object. A CLICK will usually activate any animation and may cause more complex behaviors to
begin. The BUMP will send a pointer of the BUMPING object to the BUMPED object. A SEND will
send a pointer to the sending object and an EAIMESSAGE type from an enumerated list.

Moving an object on screen involves changing the object’s position over several frames during the
UPDATE cycle. Access to the current world coordinates is part of an object’s properties. If an
object has a pointer to another object it can find information about that object’s properties too. The
script system also has pointers to the properties of the scene and game global data. Completing a
learning lesson will cause the “cursor” object to set the game global data, which indicates that the
player has learned this subject. When the player selects Clicky or Bricky their object scripts can
evaluate the status of the game global data to determine which lesson they will ask to be taught.

The support routines for character behavior can be encapsulated in specific keywords of the script
language. Keywords like MOVE, MOVETOWARD, SPAWNNEW, and others will be written in C++
for speed.

 page 2 10/19/1999 7:54:00 PM

Requirements

The requirements for the AI scripting system are to control the behavior of objects in the products.
Each object must be able to quickly process their state and move the position of the object if
necessary. The objects must also be able to react to external stimuli via the various callback
handlers. The quickest way to allow scripting and be fast is to build a small virtual machine
interpreter, similar to P-Code or Forth, and write fast C++ code to support the individual keywords.
Because the scripts must have access to the variables in a CObj class and game global data the
interpreter must abstract the access to the C++ variables.

There can be as many as 30 objects each processing their SPAWN, UPDATE and other sections
each frame. As much as possible it will be necessary for long processes to happen over
successive frames. There can be no unbounded looping structures that block further processing or
the game will skip frame updates. Looping keywords do exist to allow the spawning of multiple
random objects and coordinating multiple objects.

If each frame is 1/30th of a second on a target machine then processing all objects should take no
longer than one-third of that time or 1/90th of a second. That would leave the rest of the time for
graphics and audio processing.

Because of the direct correlation between AI scripting and approval of game design and features
some of the design work involved in the AI script language is left open at this time. This document
will receive more attention during the production phase when requirements are better known.

 page 3 10/19/1999 7:54:00 PM

Sample Script
SPAWN:

 SET(ME.XPOS,100)

SET(ME.YPOS,100)

 PLAY(“JUAN_WAVE.SPR”)

 SAY(“JUAN_WELCOME_MATH.WAV”)

 SET(ME.AISTATE,AISTATE_FREEPLAY)

 SET(ME.AIACTION,AIACTION_INTRO)

 SET(ME.TIMER,100)

 VISIBLE(TRUE)

 RETURN

UPDATE:

 IF(ME.AISTATE,AISTATE_FREEPLAY)

 IF(ME.AIACTION,AIACTION_ATTRACT)

 PARTICLE(ME.POSITION,ME.BOX,PARTICLE_STARS)

 ENDIF

 IF(ME.ANIMLOOPING)

 DECR(ME.TIMER)

 IF(ME.TIMER,0)

 PLAY(“JUAN_WAVE.SPR”)

 SAY(“JUAN_HI.WAV”)

 ENDIF

 ELSEIF

 IF(ME.ANIMDONE)

 PLAY(“JUAN_STAND.SPR”)

 SET(ME.TIMER,100)

 ENDIF

ENDIF

.

.

.

 ENDIF

 IF(ME.AISTATE,AISTATE_LESSON)

 IF(ME.AIACTION,AIACTION_ATTRACT)

 IF(ME.CLICKABLE)

 PARTICLE(ME.POSITION,ME.BOX,PARTICLE_MOONS)

 ENDIF

 ENDIF

IF(ME.ANIMDONE)

 FIND(ME.INTEREST,“BALL”)

 MOVETOWARD(ME.INTEREST)

 ENDIF

 .

 .

 .

 ENDIF

.

.

.

RETURN

MESSAGE:

 IF(ME.MESSAGE,AIMESSAGE_MOUSEOVER)

 SET(ME.AIACTION, AIACTION_ATTRACT)

ENDIF

 IF(ME.MESSAGE,AIMESSAGE_CLICKED)

 IF(ME.AISTATE,AISTATE_FREEPLAY)

 SET(ME.AISTATE,AISTATE_LESSON)

 SET(ME.AIACTION,AIACTION_CLICKED)

 ENDIF

ENDIF

IF(ME.MESSAGE,AIMESSAGE_BUMPED)

 IF(ME.MESSAGEWHO.NAME,”BALL”)

 SEND(“BALL”,AIMESSAGE_CAUGHT)

 ENDIF

ENDIF

RETURN

KILL:

 KILL(ME)

 page 4 10/19/1999 7:54:00 PM

Structures/Classes

typedef enum

{

 AISTATE_DEAD = 0,

 AISTATE_SPAWNING,

 AISTATE_FREEPLAY,

 AISTATE_LESSON,

 AISTATE_MAX

} EAISTATE;

typedef enum

{

 AIACTION_NONE = 0,

 AIACTION_MOVING,

 AIACTION_CLICKED,

 AIACTION_ATTRACT,

 AIACTION_WAITING,

 AIACTION_TALKING,

 AIACTION_INTRO,

 AIACTION_MAX

} EAIACTION;

typedef enum

{

 AIMESSAGE_NONE = 0,

 AIMESSAGE_BUMP,

 AIMESSAGE_CLICK,

 AIMESSAGE_MOUSEOVER,

 AIMESSAGE_CAUGHT,

 AIMESSAGE_APPEAR,

 AIMESSAGE_HIDE,

 AIMESSAGE_ACTIVATE,

 AIMESSAGE_MAX

} EAIMESSAGE;

typedef enum

{

 AITOKEN_NULL = 0,

 AITOKEN_RETURN,

 AITOKEN_IFBOOL,

 AITOKEN_IFSTRING,

 AITOKEN_IFNUMBER,

 AITOKEN_KILL,

 AITOKEN_VISIBLE,

 AITOKEN_SET,

 AITOKEN_SAY,

 AITOKEN_BEEP,

 AITOKEN_PLAY,

 AITOKEN_SEND,

 AITOKEN_PARTICLE,

 AITOKEN_DEBUGOUT,

 .

 .

 .

 AITOKEN_MAX

} EAITOKEN;

typedef enum

{

 AITYPE_NONE = 0,

 AITYPE_CURSOR,

 AITYPE_CHARACTER,

 AITYPE_PROP,

 AITYPE_PARTICLE,

 .

 .

 .

 AITYPE_MAX

} EAITYPE;

 page 5 10/19/1999 7:54:00 PM

class CNoggin

{

private:

 BYTE* pScript;

 BYTE* pSpawn;

 BYTE* pUpdate;

 BYTE* pMessage;

 BYTE* pKill;

 BOOL Parse(BYTE* Section);

public:

 CNoggin();

 ~CNoggin();

 BOOL NogLoad(char* ScriptName);

 BOOL NogSpawn(void);

 BOOL NogUpdate(float DeltaTime);

 void NogMessage(CObj* Who);

 BOOL NogKill(void);

}

 page 6 10/19/1999 7:54:00 PM

Schedule Task List

System Tasks Duration Dependent

Design AI Script System 5 Days Design Document

Code Noggin Tool 1ST Pass 5 Days AI System designed

Code Noggin Tool 2nd Pass 5 Days AI System designed

Code AI System Class 5 Days AI Class designed

Code AI Parser 3 Days AI System designed

Code AI Keywords 5 Days AI Class designed

Integrate AI System 3 Days AI Class coded

Test & Revise AI System 1 Day RK System integrated

Rework #1 AI System 2 Days As Needed

Test & Revise AI Rework #1 1 Day AI System Reworked #1

Rework #2 AI System 2 Day As Needed

Test & Revise AI Rework #2 1 Day AI System Reworked #2

Rework #3 AI System 2 Day As Needed

Test & Revise AI Rework #3 1 Day AI System Reworked #3

Total 41 Days

System Tasks Duration Dependent

Code Pre-K Math Scripts 10 Days AI System integrated

Code Pre-K Language Scripts 6 Days AI System integrated

Code Pre-K Art Scripts 6 Days AI System integrated

Code Pre-K Music Scripts 6 Days AI System integrated

Code K Math Scripts 6 Days AI System integrated

Code K Language Scripts 6 Days AI System integrated

Code K Art Scripts 6 Days AI System integrated

Code K Music Scripts 6 Days AI System integrated

Total 52 Days

 page 7 10/19/1999 7:54:00 PM

Memory

The AI Script System uses very little memory if 20 objects have 10K bytes of script and class
space each that would amount to 200K bytes of AI space.

Risk Assessment

The real risk with the AI Script System is that we might need additional revisions during
development. The design time allocated during development should help to lessen that risk and
the method used for this script system is based on several generations of previous script system
design.

In order to guard against faulty scripts, magic numbers and checksums can be used in the files.

QA & Test

The AI Script system will probably have the greatest number of errors. The language is new and
therefore the programmers will make occasional mistakes. The compiler tool, NOGGIN, will catch
some of these, while the debug output will help to catch others. The CNoggin class is relatively
simple code and should be easy to test in early versions. The testing of the NOGGIN tool will be
done while building and integrating the CNoggin Class.

