
Confidential and proprietary information of Stormfront Studios and LEGO - page 1 10/28/99

LEGO Code Design Document, v11

Randy Angle

October 28, 1999

LEGO Code Model

LEGO will be implemented as an object oriented approach to a “Director” style 2D educational
product. The overall structure of the LEGO game will center on a typical main-loop style with each
system getting called with an appropriate time slice to execute its needed functionality. There
should be no “blocking” long-term processes during game play. The movie system is handled
differently and will block waiting for the end of the movie or an interruption. The main-loop should
process at least every 15th of a second (30th on the target) and all systems will be called each loop.
Critical, interrupt, tasks will have callbacks to indicate the completion of tasks. Messaging between
objects will happen by calling inter-object methods to pass information. HARDWARE and low-level
functionality will be abstracted as a SYSTEM layer. The logic and process will be handled in the
GAME layer.

Those things that actually touch the hardware in some way or act as utilities (Graphics, Sound, File
handling, Input, etc) will reside in the SYSTEM layer. The abstract or product specific code
(animation, AI, hot-spot detection, UI, script, etc.) will reside in the GAME layer. The idea here is to
separate the hardware functions so that it is easier to port the product from the PC to the MAC.

Game

System

Hardware/OS

Confidential and proprietary information of Stormfront Studios and LEGO - page 2 10/28/99

Game Loop
LEGO will has two central loops and a core path for passing data between the systems during
object update. During game play all objects will get processed every frame for AI, Movement,
Physics, Collision and if necessary Player I/O.

Main
 Setup Windows
 Init subsystems
 Locate CD & SaveDir
 Load Game Settings
 State
 Movie
 Scene
 Ba-Bye

Scene
 Load
 Input
 Exit
 Object
 Update

 Player I/O
 AI

 Move
 Physics

 Collide
 Animate

 UI
 Clip
 Sound
 Draw
 Flip

Confidential and proprietary information of Stormfront Studios and LEGO - page 3 10/28/99

Timing Model

LEGO will use delta-time per frame for all calculations. All physics, collision, animation, AI and any
other time dependant calculation will use the delta frame time for any specific frame. After each
frame update, the delta-time is calculated and kept in a global variable, gDeltaTime. All systems
can check the gDeltaTime for any time-based calculation. Also for use is a global variable,
gGameTime, that shows the elapsed time since the game has begun.

The motion will be calculated based on the gDeltaTime value. The animation routines handle the
delta time to interpolate between key-frames. For looping positions any amount that the loop length
has been exceeded is used as an offset from the beginning of the loop for keeping smooth
animation. The AI will have the scripted heuristics adjusted based not only on animation time for
actions but any random waiting will be done based on the delta-times accumulated as each AI
update is called. If an AI needs to be lowered in priority each AI can decide to lower its’ update rate
by returning early until its’ own determined delta-time has been reached. That way a button can go
down to low priority until the player presses it.

Because of LEGO timer model there is very little risk in short delays for single frames. If windows
tasks for a moment LEGO will gracefully continue with no affect to the continuing game play. It is
the goal of the team to achieve at least 30 frames/second on the target system with 15
frames/second on the minimum system.

Confidential and proprietary information of Stormfront Studios and LEGO - page 4 10/28/99

LEGO Data Model

As much as is reasonable the LEGO software will be considered an engine. The actual game will
be data driven from data sets created in various tools. LEGO 2 should be a simple addition of a
new data file included with the LEGO Engine Player. One executable, an installer, a document file,
a default configuration file and a new set of assets will comprise all the deliverables on a master
CD-ROM. Extending or developing for LEGO should be easy.

Installation

The “save game” directory will contain the executable (so that it can be patched), all save games
and configuration files. A typical hard-drive install will consume less than 5MB of disk space,
1.5MB for executable, 50KB for configuration files, and the rest for save game data.

On the PC LEGO will use InstallShield and Auto-play to install itself when the CD is inserted. The
Auto-play executable will set a registry flag indicating it has finished installing LEGO and the next
time it is run it will simply ask if the Player wishes to play the game. If the game is uninstalled the
registry flag is cleared and the Auto-play will install it again.

On the MAC LEGO will use InstallVice a product for the MAC similar to the PC InstallShield.

File Access

When the game is started it determines where the “save game” directory and CD drive with the
game is. During scene loading all CD access will happen at the maximum rate for the drive. During
game play no data will be read except streamed songs or dialog.

File data will be loaded in pre-compiled chunks. Instead of using an IFF style file format and
parsing the data, LEGO will use a format with a structure header that has byte offsets into the
individual sections of data. Large data buffers will be filled with the contents of files and a pointer to
the base structure will allow for pointer arithmetic into the actual data chunks. The reason for doing
this is for speed, memory management, and avoiding the blue-text-screen-of-death. For more
detail see the FILE SYSTEM.DOC.

Confidential and proprietary information of Stormfront Studios and LEGO - page 5 10/28/99

System Memory

Size for types of objects:

Object Size (Kbytes)

Character Animation – 128 frames 512

Sound library – 95 seconds 1024

Prop animation – Appear, Activate, Glow… 256

Executable – PC 1537.5

Scene – One learning activity 128

Script – One complex object 128

Graphics Buffers – 64x64x16Bit 8

Sound Buffers – 47 seconds 512

Approximately 256KB are used for instancing class data for game objects. Windows 95 has
approximately a 16MB footprint; Windows 98 can take up to 20MB (all approximate Windows is not
consistent on this matter).

The allocation for work RAM is:

Item Size (KB)

Executable 1537.5

Data 256

Scene & Scripts 2048

Sound & Stream Buffer 1537.5

Character Animation 4096

Prop Animation 256

Graphics Buffers 2048

Total 11779

Available 509

Confidential and proprietary information of Stormfront Studios and LEGO - page 6 10/28/99

Auxiliary Memory

DirectSound makes it possible to load the sound samples into sound memory for quick processing
of audio effects without incurring additional space in System Memory. If available, LEGO will take
advantage of this memory for its’ audio samples. There is no equivalent MAC sound card
advantage.

LEGO is best with at least 2MB of VRAM. This allows us to page flip and retain a background in
video memory.

The allocation for 2MB of VRAM is:

Item Item Size in Bytes

Display Buffer 640x480x16 614400

Back Buffer 640x480x16 614400

Background 720x480x16 691200

UI Elements & Font 177152

Total 2097152

CD-ROM Storage

Most components of the game will be used in more than one scene. There are 28 activities, one
scrolling world, one sign-in scene, and one type-in name scene. The bulk of the CD will be dialog
and songs. The next biggest set of assets will be animations and then backgrounds. There are
eight static backgrounds at approximately 380K bytes each and one large scrolling background at
approximately 2048K bytes. There

Asset Quantity Asset Size (MB) Total Size (MB)

Executable & Config 2 3 6

SceneDBs & Scripts 32 2 64

Characters 10 5 50

Props 200 .25 50

Dialogs 50 3 150

Sound Libraries 50 1 50

Songs 8 3 24

Scene Backgrounds 7 .3 2.1

Scrolling Backgrounds 1 3 3

Intro & Outro 2 100 200

Total 599.1

Confidential and proprietary information of Stormfront Studios and LEGO - page 7 10/28/99

PC Windows and MAC OS 8.6

LEGO is being developed as both a PC Win95/98/2000 and MAC OS 8.6 application. It will use
normal C++ coding methods as interpreted by the Monkey Business Coding style document.
Unless otherwise stated please refer to that document for style questions. Like any well-behaved
application it will gracefully handle losing focus, saving and restoring screens as necessary. As a
windows executable we will be using Microsoft DirectX in our system level APIs. On the MAC we
will be using GameSprockets. Sound will be using the DirectSound and SoundSpockets with
SoundManager 3+ libraries. User input will be interfaced using DirectInput and InputSprocket for
the keyboard, joystick, and mouse.

LEGO Tools

For the data driven model to work the LEGO tools will have to be tightly integrated and easy to use
for non-technical designers and artists. The LEGO tool set will include:

NOGGIN - AI Script Compiling tool

All the character and prop object behaviors will be scripted in a text editor and compiled to allow
team members to manipulate the properties of these objects including responses to the players
input or timed events. All the scripts will use a simple BASIC like programming language that will
allow fine control over an object’s behavior. The tool to do this is the key to allowing the most
control over game play. If we cannot budget and schedule this tool, programming will have to
modify all game variables and code all AIs at compile time.

SAM - Scene Asset Manager Tool

The LEGO team has decided to build a tool to construct the scenes and build asset databases.
Members of the ART and ENGINEERING staff will both use the tool to create activity scenes.

SPR – Sprite Converter Tool

The sprite converter tool reads a 24bit AVI file and trims the color components back to 15bit (no
dither). It performs differential frame compression using a format similar to Autodesk FLC. The
resulting file is saved as a SPR.

Background – Background Conversion Tool

Converts the TGA format into a section of 64x480 pixel strips used in the game for making scrolling
backgrounds work.

All other asset data in LEGO is standard for any Windows application and requires no additional
work or modification by the engineering team.

Confidential and proprietary information of Stormfront Studios and LEGO - page 8 10/28/99

Miscellaneous Systems – not documented elsewhere

Debug support

The PC version will support sending messages to the Debug Window in the Visual C++ debugger.
It can also open a console window and send it console like output, including printing at an (X,Y)
coordinate. There will also be the capability for sending messages to a log file. The plan to support
dual monitors via DirectX is also being considered. The debug module has class that supports the
console and several classic C-functions for the various printf-like debug routines.

The impact of debug support on the production schedule is minimal. The console and debug
window support exists in the prototype, and we will add dual monitor capability over time if
necessary.

Installation

As outlined in the discussion early about the installation system we will be using InstallSheild and
InstallVice. A specific auto-boot program may be necessary on the PC and can be completed
during the ALPHA phase of development. It will check the registry to find if the program has
already been installed and call the installer or play the game based on what it finds there. It may
also use Randy’s system information routines to insure that the PC meets minimal requirements.
Typically an auto-boot program requires a bitmap from art and approximately 4 hours of
programming time to implement. On the MAC a window is automatically opened and the install or
play icons will be visible.

Demo Mode

If necessary the opening animation will replay if the sign-in screen is left unattended for too long.
No demo or attract mode is present in the features of LEGO.

Localization

LEGO will use an extended ASCII character set that will allow for foreign language conversion.
Menu and dialog text will be kept in a resource file that holds all text. Any text in art will have to be
changed by the artists. Art for fonts will follow this extended ASCII character set.

Time will be scheduled at the end of the American English version to convert assets, scenes and
scripts for use in foreign language versions of LEGO.

Confidential and proprietary information of Stormfront Studios and LEGO - page 9 10/28/99

Development Directory Structure

The network drive for LEGO is kept on NT2\MONKEY. On each engineer’s machine it is mapped
to the “M:” drive. The directory structure is

 NT2 The server
 Monkey The project directory
 VSS The Visual SourceSafe backup of all code
 Tools Any tool executables to convert assets
 CodeTemp A Junk directory to share code files

Final Preschool PC and MAC installers and executables
 Scripts Object NOG files
 Scenes Scene SAM files

 Characters Character SPR files
 Backgrounds Background TGA files
 Props Non-Character SPR files
 Interface Font, cursor, and particle TGA files
 Sounds Effect WAV files
 Dialogs Character speech and song WAV files
 Music MOD or MIDI files with samples
 Movies Intro and End MPG movies

 Final Kindergarten PC and MAC installers and executables

 Scripts Object NOG files
 Scenes Scene SAM files

 Characters Character SPR files
 Backgrounds Background TGA files
 Props Non-Character SPR files
 Interface Font, cursor, and particle TGA files
 Sounds Effect WAV files
 Dialogs Character speech and song WAV files
 Music MOD or MIDI files with samples
 Movies Intro and End MPG movies

Milestone Finish Criteria

Just before each milestone the whole team will spend at least 3 days integrating code and
polishing the deliverables. After each milestone the Lead Engineer will do a code review to insure
that the code generated for the milestone was done according to project policy and standards and
that no shortcuts or hacks were made just to complete the milestone. After code review any
adjustments to the engineering schedule will be made.

Confidential and proprietary information of Stormfront Studios and LEGO - page 10 10/28/99

LEGO Risk Analysis

Engineering Staffing

All engineers are hired for the beginning of production. If for some reason an engineer is no longer
available to the team then a replacement will have to be acquired as soon as possible. If a
replacement can not be found internally, an external solution will be sought with urgency. While the
scheduling of LEGO includes times for vacations, conferences and some training, no extended
down time is anticipated.

The Macintosh consultant is a backup plan if needed to lessen the impact the conversion to MAC
will cause. The engineering team plans to do as much as possible without the consultant but can
not let the conversion slip the schedule of the PC product.

NOGGIN - AI Script Compiling tool

If we cannot budget and schedule this tool, programming will have to modify all game variables
and code all AIs at compile time.

SAM - Scene Asset Manager Tool

If we cannot budget and schedule this tool, programming will have to construct these as data
structures in the compiled code.

SPR – Sprite Converter Tool

If we cannot budget and schedule this tool, programming will have to construct these as
compressed numbered frames of TGA files.

Confidential and proprietary information of Stormfront Studios and LEGO - page 11 10/28/99

LEGO Engineering Roles

Lead Engineer – Randy Angle

Experience:

 21 Years Programming in assembly, BASIC, FORTH, …

 15 Years in object oriented C

 3 Years in C++

 8 Years Embedded Systems Programming and Lead Project Engineer

 22 Years Designing and Small Scale Publishing Role-playing Games

 17 Years Amateur Designing, Programming, and doing Art for Computer Games

 8 Years Professionally making Computer & Video Games as Lead Designer or Lead
Engineer

Credits:

 Goblins – 1998 PC & Playstation, Lead Engineer

 Reapers – 1998 PC, Lead Engineer

 Last Express – 1997 Sony Playstation & PC, Lead Playstation Engineer and Conversion
Designer, PC support programmer

 Aftermath Engine – 1995 Sony Playstation & PC-CDROM, Lead Engineer, Technical
Designer

 Star Trek: The Next Generation – 1994 Genesis & SNES cartridge, Lead Designer &
Programmer

 Chess Maniac 5 Billion & 1 – 1994 Voice acting

 Falcon 3.0 – 1992 Testing, Support Supervising and Training

 Super Tetris – 1991 Lead Tester
Skills:

 Project Leadership

 Game Design

 AI Systems

 Overall Game Architecture

 High Performance File Systems

 Compression Technologies

 Digital & Analog Electronics & Circuit Design

 In-Circuit Emulation

 Assembly Language Optimization

 Programming Language Design & Interpreters

 Structures and Algorithm Design

 Sound Design and Programming

 High Speed Graphic Optimization

Confidential and proprietary information of Stormfront Studios and LEGO - page 12 10/28/99

Lead Engineer – Randy Angle - Continued

Responsibilities:

 Oversee the technical end of LEGO

 Schedule of all LEGO engineers

 Participate in the pre-production process with other leads

 Interface with the other leads to ensure good communication

 Hire engineering resources

 Evaluate, Research and Develop new technologies

 Code design for the overall structure of LEGO

 Manage communication between all of LEGO engineering

 Keep teams tasks on schedule as needed

 Provide for training engineers in areas that need improvement

 Design, plan and implement the Main and Game loops for LEGO

 Design, plan and implement the AI technology for LEGO

 Design, plan and implement the Particle system

 Design, plan and implement the Procedural Texture system

 Design, plan and implement the Record Keeping system

 Design, plan and implement the Debug support system

 Design, plan and implement the Installer

 Help design, plan and implement the Animation system

 Help design, plan and implement the Graphics system

 Help design, plan and implement the Scrolling Environments system

 Design, plan, implement and support AI Scripts as needed

 Support SPR tool as needed

 Support NOGGIN tool as needed

 Perform Code Reviews at each milestone

 Provide any engineering documentation during the project

Confidential and proprietary information of Stormfront Studios and LEGO - page 13 10/28/99

Engineer – Greg Sabatini

Experience:

 15 years programming in BASIC, QuickBASIC, PASCAL...

 4 years C programming experience

 3 years C++ experience

 2 years project scheduling and coordination
Credits:

 Hot Wheels Turbo Racing, 1999, Nintendo and Cross Platform Development

 Byzantine: The Betrayal, 1997, Additional Programmer

 XOC, 1997, Programmer

 EDISON, 1997, Programmer
Skills:

 Win95, Nintendo 64

 C++, C

 DirectX

 2D graphics (sprites, alpha matting, image processing)

 Graphics optimization

 Multi-platform Sound programming

 Audio/Video synchronization
Responsibilities:

 Evaluate, Research and Develop new technologies

 Work with other engineers to maintain uniform development procedures

 Take responsibility for version control and regular backups

 Design, plan and implement the Movie system

 Design, plan and implement the Streaming Dialog system

 Design, plan and implement the Sound system

 Design, plan and implement the Scene Asset Management tool

 Design, plan and implement the Input system

 Design, plan and implement the Resource system

 Help design, plan and implement the Scrolling Environments system

 Help design, plan and implement the Character Animation system

 Help design, plan and implement the Graphics system

 Help write scripts for activities

 Take responsibility for CD Burns & Integration before milestones

 page 1 6/19/2022 10:49:00 AM

Headers & Footers

Besides using all the coding standards outlined in the Monkey Business Programming Policies
document, all CPP & H files in LEGO will use a footer comment that has the following keyword for
Visual SourceSafe:

Header:
//

//

// Project : DUPLO Inventures

//

// $Workfile: $

//

// Comments :

//

// Creator : Randy Angle

//

// Last $Author: $

//

// Created : 9/23/1999

//

// $Revision: $

//

// Copyright (c) 1999 Stormfront Studios

//

///

Footer:
/*

 * $History: $

 */

