

Graphics System Design Document, v2

Randy Angle

October 20, 1999

Introduction

The graphics system provides three levels of support. The first area is setting the screen and video
memory into a playable 640x480 pixel resolution with at least 15bit color and the low-level support
for page flipping. This is accomplished by DirectDraw on the PC and DrawSprockets on the MAC.
The second level of support is the handling of bitmaps or surfaces that contain the loaded assets.
The third, higher-level, responsibility is to abstract the handling of graphical primitives in a cross-
platform way. These graphic primitives will be sprites and base class functionality for graphic types
discussed in other documents (ANIM sprites, procedural textures, etc.).

Requirements

The three areas of the graphics system will be handled by several classes. The CVideo class
handles the screen functions and page flipping. The CBitmap class contains the single instance of
an art asset and abstracts the concepts of surfaces or texture space. The CSprite class is used in
conjunction with properties from the CObj class, for scene objects, and provides the base
functionality for graphical objects. There can be several CSprite objects that will use a CBitmap as
their displayed image.

The critical aspect of this design is that a single set of cross-platform assets can be used in a
consistent and high performance way on both MAC and PC. PC frame rates on the target machine
should be able to attain 30fps; the minimum system should attain 15fps. On the MAC these frame
rates may be slightly less but a good goal would be 15fps minimum.

We are assuming that on the PC there will be 2Mb of VRAM for multiple display pages,
background buffers, and static images like fonts and particle sprites. The MAC uses video memory
slightly differently so these concepts will be abstracted accordingly.

Structures/Classes
class CVideo

{

private:

#ifdefined _WIN32_

 LPDIRECTDRAW4 pDDContext; //PC

 LPDIRECTDRAWSURFACE4 pFrontBuf; // chunk of video memory used for display

 LPDIRECTDRAWSURFACE4 pBackBuf; // video memory drawn to before a flip to display

#else

DSpContextReference pDSContext; //MAC

CGrafPtr* pFrontBuf;

CGrafPtr* pBackBuf;

#endif

public:

 CVideo();

 ~CVideo();

 BOOL SetMode(void); // finds and sets 640x480x15 (or 16) and inits buffers

void Blit(POINT Position, SIZE Size, WORD* PixelBuf);

 BOOL Update(CBitMap* pWorkBuf); // calls background update, does blit and flip

// returns MSB values for current video mode

void GetMSB(WORD *RedMSB,WORD *GreenMSB,WORD *BlueMSB);

 void Blit(WORD* pPixelBuf, POINT Position, SIZE Size, RGB16 ColorKey);

 void Blit(WORD* pPixelBuf, POINT Position, SIZE Size);

}

class CBitMap

{

private:

 SIZE Size;

 WORD* PixelBuffer;

public:

 CBitMap();

 ~CBitMap();

 BOOL Load(char* FileName, CVideo* pVid);

 void SetSize(SIZE NewSize);

}

class CSprite

{

private:

 CBitMap* pImage;

 POINT DrawnPosition;

 RECT SubBox;

 RECT ClipBox;

 int Layer;

 RGB16 ColorKey;

public:

 CSprite();

 ~CSprite();

 void Draw(CVideo* pVid, POINT* dst); // draws the whole sprite

 void Draw(CVideo* pVid, POINT* dst, RECT* SubSrc); // draws the sprite from a sub-tile

 virtual BOOL Load(char* FileName);

 pure virtual void Update(float DeltaTime) {;};

void SetPosition(long X, long Y);

 void SetColorKey(RGB16 Color);

 void SetClip(RECT* ClipBox);

void SetSize(SIZE Box);

void SetLayer(int newLayer) {Layer = newLayer;};

}

Schedule Task List

System Tasks Duration Dependent

Design CVideo Class 3 Days Design Document

Code PC CVideo Class 4 Days CVideo Class designed

Code MAC CVideo Class 4 Days PC CVideo Class coded

Integrate CVideo Class 2 Days CVideo Class coded

Test & Revise CVideo Class 1 Day CVideo Class integrated

Rework #1 CVideo Class 1 Day As Needed

Test & Revise CVideo Rework #1 1 Day CVideo Class Reworked #1

Rework #2 Cvideo Class 1 Day As Needed

Test & Revise CVideo Rework #2 1 Day CVideo Class Reworked #2

Design CBitMap Class 1 Day Design Document

Code PC CBitMap Class 2 Days CBitMap Class designed

Code MAC CbitMap Class 2 Days PC CBitMap Class coded

Integrate CbitMap Class 1 Day CBitMap Class coded

Test & Revise CBitMap Class 1 Day CBitMap Class integrated

Rework #1 CbitMap Class 1 Day As Needed

Test & Revise CBitMap Rework #1 1 Day CBitMap Class Reworked #1

Rework #2 CBitMap Class 1 Day As Needed

Test & Revise CBitMap Rework #2 1 Day CBitMap Class Reworked #2

Design CSprite Class 1 Day Design Document

Code CSprite Class 2 Days CSprite Class designed

Integrate CSprite Class 1 Day CSprite Class coded

Test & Revise CSprite Class 1 Day CSprite Class integrated

Rework #1 CSprite Class 1 Day As Needed

Test & Revise CSprite Rework #1 1 Day CSprite Class Reworked #1

Rework #2 CSprite Class 1 Day As Needed

Test & Revise CSprite Rework #2 1 Day CSprite Class Reworked #2

Total 38 Days

Memory

Besides the class size, which is relatively small, the CBitMap class uses a pixel buffer that is
loaded into system RAM, or VRAM, for image data. The only other memory is the instance of the
various classes. This should amount to less than 1K of RAM for class overhead and width*height*2
per bitmap. A typical scene might use approximately 20, 64x64x2 images resulting in 163860 bytes
of memory.

The CVideo class buffers are in VRAM and are included in the master memory map.

Risk Assessment

A real risk with the graphics system is that it could be very slow or take too much RAM. A
significant and necessary amount of time has been allocated to make this system a reliable and
fast as possible. Because the base engineering team has no practical experience with MAC
graphics we are basing our estimates on the descriptions in the Apple Developers Guides. Hiring
the MAC consultant will work to lessen this risk.

QA & Test

The graphics system is a core technology and will have several test/rework cycles. The QA
department should pay special attention to the visual look of the on screen objects, the clipping
behaviors at the edge of the screen, and the video frame rate on our minimum systems.

