
 page 1 10/12/1999 11:08:00 AM

[Version number, author, save date, and task days total are fields and can be updated with F9]

Background System Design Document, v3

Greg Sabatini

October 12, 1999

Introduction

This system must load in the backgrounds, both scrolling and non-scrolling, keep
track of which ones are in memory, and blit them to the display.

Requirements

This system must be fast on both systems, but use the same assets. We will be
using run-length encoded strips of 64x480 pixels to composite the backgrounds.

We have 2 possible methods for doing the background compositing.

The first system requires a background buffer located in video memory and two
additional buffers in video memory for the scrolling worlds. These are the Left
and Right buffers. We will initially composite the base 640x480 image onto the
background buffer and the strip to the left and right of the image in the Left and
Right buffers, respectively. When the user scrolls, we will first blit the portion of
the Background buffer that is still in view to the Back Buffer. The new portion
would be blit from the Left or Right buffer to the Back Buffer. The Back buffer
then gets blit to the Background buffer. This gives us 3 blits, one of (640-x)*480
pixels, one of x*480 pixels, and one of (640*480) pixels. It is important to note
that in this scenario we must use a power of two (divisor of 64) for the scrolling
factor, x, so that the Left and Right buffers never are moved off of until we
reshuffle the Left and/or Right Buffer. On the Mac we can still use the Underlay
buffer as the Background buffer, but the Left and Right buffers will not exist, as
the strips will be in system memory already.

The second system requires us to put a full 12 strips in video memory,
individually. The strips are then composited directly to the back buffer. As the
user scrolls, the strips get shuffled to remove those that are not in use keeping a
1 strip buffer on either side. This gives us an average case of 11 blits: nine of
64*480 pixels, one of x*480 pixels, and one (64-x)*480 pixels. Once again, it is
important in this scenario to keep a power of two (divisor of 64) for the scrolling
factor X. On the Mac, this scenario would have to be performed completely from
system memory, however due to the RLE of the strips, could prove to be faster
than the previous.

 page 2 10/12/1999 11:08:00 AM

For a non-scrolling background, the same system will be used of strips and
buffers, with appropriate simplifications done to gain as much speed and memory
savings as possible.

This system is frame rate critical to the product. We can not afford the scrolling
background to cause a 1 frame decrease.

This system must be closely integrated with the graphics system, as it is
dependent on this system so that it doesn’t have to clear the back buffer. Also
this system must have complete access to the back buffer.

Structures/Classes

class CBackground {
 int XScrollPosition;
 LinkedList CBackgroundAssets; // Background
}

class CBackgroundAsset {
 pRLE
 pDDSurface
 int nID
 int Left, Right;
}

Functions/Methods

class CBackground {
 Load(szLabel);
 Blit(DDSurface BackBuffer, int X); // Blit whole back buffer with arg for
world to screen offset
}

class CBackgroundAsset {
 Blit(DDSurface*); // Fast Blit RLE to DDSurface (for System to video)
 Blit(DDSurface*, int X); // Fast blit, blits DDSurface to DDSurface at X
 Blit(DDSurface*, int X, int L, int R); // Blits DDSurface rect with L and R to
DDSurface at X

 SetDDSurface(*DDSurface); // sets, clears DDSurface pointer.
 SetRLE(void*); // sets RLE Buffer
}

Diagrams

 page 3 10/12/1999 11:08:00 AM

Schedule Task List

System Tasks Duration Dependent

Design Background system 2 Days Design Document

Design Background Strip RLE tool 1 Day Design Document

Code Background Strip RLE tool 2 Days RLE tool designed

Test & Revise BG Strip RLE tool 2 Days BG Strip RLE tool coded

Code Win32 CBackgroundAsset
class

2 Days Background system
designed

Code Win32 CBackground class
(both methods)

3 Days Win32 CBackgroundAsset
class coded

Integrate Win32 CBackground &
CBackground Asset

1 Day Win32 CBackground class
coded

Test, Optimize, & Revise Win32
Background system

2 Days Win32 Background system
Integration, Win32
performance analysis tool

Code Mac CBackgroundAsset class 2 Days Background system
designed

Code Mac CBackground class
(both methods)

2 Days Win32 Background system
coded, Mac
CBackgroundAsset class
coded

Integrate Mac CBackground &
CBackground Asset

1 Day Mac CBackground class
coded

Test, Optimize, & Revise Mac
Background system

3 Days Mac Background system
Integration, Mac
performance analysis tool

Rework #1 BG Strip RLE tool 1 Day BG Strip RLE tool complete

Test & Revise BG Strip RLE tool
Rework #1

1 Day BG Strip RLE tool
Reworked #1

Rework #2 BG Strip RLE tool 1 Day BG Strip RLE tool complete

Test & Revise BG Strip RLE tool
Rework #2

1 Day BG Strip RLE tool
Reworked #2

Rework #1 Background system 2 Days As Needed

Test & Revise Background system
Rework #1

1 Day Background system
Reworked #1

Rework #2 Background system 2 Days As Needed

Test & Revise Background system
Rework #2

1 Day Background system
Reworked #2

Rework #3 Background system 2 Days As Needed

Test & Revise Background system
Rework #3

1 Day Background system
Reworked #3

Total 36 Days

 page 4 10/12/1999 11:08:00 AM

Memory

This system will require 64*12*480*2 = 720K of video memory, out of the 848K
available. Additionally, it will require in the scrolling world approximately 3 megs
of system memory: 8 world areas * 800 pixels wide * 480 pixels tall * 2 bytes per
pixel * 50% RLE compression = 3000 K.

On the CD, the backgrounds will take up 12.3 megs of space:

Name # Size Total

Scrolling World Area 8 800*480*2 6144000

Curriculum Backgrounds 4 640*480*2 2457600

Clicky/Bricky Backgrounds 4 640*480*2 2457600

Additional Backgrounds 3 640*480*2 1843200

 TOTAL 12.3 Megs

Risk Assessment

Speed here is the biggest potential problem. We spend time optimizing the
background to be as fast as possible. Coding our 2 best solutions and using the
better one will preoptimize the code. There is an additional time allocated for
optimizing.

The Mac has many more potential problems than the PC. Our research indicates
that the Mac abstracts video memory and doesn’t allow us to manage it and use
it for the very fast video-to-video memory blits. Once again, we may need to call
in the Mac consultant for help optimizing our Background system.

QA & Test

If backgrounds are displayed properly, and the screen scrolls properly in the
scrolling world, then this system works. If background graphics are garbled or
pixels are repeated, or there is a noticiable chug in the game at regular intervals
while scrolling, it is probably in this system.

