

Animation System Design Document, v3

Randy Angle

October 19, 1999

Introduction

The animation system uses services provided by the sprites in the graphics system to build a new
class called CAnimSprite. The bitmap information for the sprite changes at a regular animation rate
to represent internal motion in a sprite object. For instance the arms and legs of a character. The
animation format used will also incorporate delta frame compression, meaning each frame only
stores the pixels that changed from the previous frame. The technique is similar to the popular
FLI/FLC formats developed for Autodesk Animator Studio but extends the functionality to include
WORD sized, instead of BYTE sized, pixels.

Each object can have several animations for different actions that the object can perform. The
SAM (scene asset manager) will allocate assets and the object structure will point to the various
action animations.

Requirements

Animation size is consistently one of the largest assets and memory requirements of any game.
Animation size, both in memory and on disk is a significant concern. The optimal use of memory by
compression is the way to counterbalance the size and achieve the required number of frames for
the various animations in a typical scene.

The suggested frame rate for the PC target system is 30fps. The minimum system frame rate is
recommended 15fps. On the MAC this minimum frame rate must also be achievable. The fact that
each frame is difference compressed means that a significant amount of pixel writes is reduces as
long as small changes to the image happen each frame. Having 20 animate-able objects on
screen and 2 or 3 of them animating at anyone time should be doable with this system.

Structures/Classes
class CAnimSprite:CSprite

{

private:

 BYTE* pCompData; // location of the compressed frame data

 BYTE* pFrameData; // location of the next frame in the byte stream

 float AnimTime; // frame time roughly equivalent to 1/30 second so the

// granular size of a frame will remain that size

// so the frame displayed is AnimTime/30

 BOOL bLooping; // set TRUE if the animation loops

 BOOL bDone; // set when a non-looping animation finishes

public:

 CAnimSprite();

 ~CAnimSprite();

 void Play(BYTE* pAnimData, BOOL bLoopingState);

 BOOL GetLoopingState(void);

 BOOL GetAnimDone(void);

 void Update(float DeltaTime);

}

Schedule Task List

System Tasks Duration Dependent

Design CAnimSprite Class 1 Day Design Document

Code CAnimSprite Class 4 Days CAnimSprite Class designed

Integrate CAnimSprite Class 2 Days CAnimSprite Class coded

Test & Revise CAnimSprite Class 1 Day CAnimSprite Class integrated

Rework #1 CAnimSprite Class 1 Day As Needed

Test & Revise CAnimSprite Rework #1 1 Day CAnimSprite Class Reworked #1

Rework #2 CAnimSprite Class 1 Day As Needed

Test & Revise CAnimSprite Rework #2 1 Day CAnimSprite Class Reworked #2

Total 12 Days

Memory

Besides the class size, which is relatively small, the CAnimSprite class uses a buffer that is loaded
into system RAM for frame data. This should amount to less than 1K of RAM for class overhead
and width*height*2/10 per frame. A typical 30 frame 64x64x2 animation might use approximately
24577 bytes of memory.

Risk Assessment

A real risk with the animation system is that it could be very slow or take too much RAM. A
significant and necessary amount of time has been allocated to make this system a reliable and
fast as possible. If necessary an alternative animation system based on some other form of
compression might play faster on an MMX PC or PowerPC MAC, but there has been no R&D time
allocated for that contingency.

QA & Test

For the animation system the QA department should pay special attention to the visual look of the
on screen animating objects, the clipping behaviors at the edge of the screen, and the video frame
rate on our minimum systems. One specific nag about animation is the looping condition. A looping
animation should not jump or skip at the end of its’ cycle. If this behavior is noticed, indicate it as a
bug.

